

Journal of Organometallic Chemistry 524 (1996) 289-291

Preliminary communication

Using metal-metal bond forming reactions as a synthetic strategy towards building polymers containing Fe-Fe and Fe-Sn-Fe bonds

Patrick McArdle *.ª, Lynn O'Neill ª, Desmond Cunningham a, Anthony R. Manning b

^a Chemistry Department, University College, Galway, Ireland ^b Chemistry Department, University College, Belfield, Dublin 4, Ireland

Received 27 March 1996; in revised form 26 April 1996

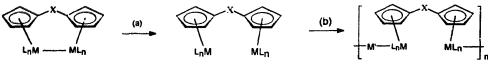
Abstract

Linked cyclopentadienyl ligands coupled with metal-metal bond forming reactions provides a synthetic route towards the construction of polymers contain the repeat units (Fe-Fe-link) and (Fe-Sn-Fe-link).

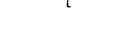
Keywords: Cyclopentadienyl; Polymers; Spectroscopy; Iron; Tin

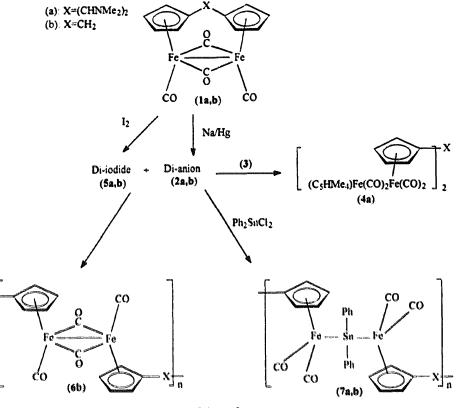
1. Introduction

The synthesis of polymers in which the polymer backbone contains a metal atom is an area of current interest due to their potentially useful chemical and physical properties [1]. Synthetic routes to system: with single or isolated metal atoms in the repeat unit have been well established [2,3]. A strategy which will allow the construction of polymers containing M-M and M-M'-M moieties is now reported. The underlying strategy is to couple linked cyclopentadienyl ligands with conventional metal-metal bond forming reactions, Scheme 1.


Step (a) may be an oxidation, i.e. iodination to produce the diiodide $IM(L_n)CpXCpM(L_n)I$ or a reduction to give the metallodianion $M(L_n)CpXCpM(L_n)^{2-}$, whilst step (b) is a salt elimination (see Scheme 2).

This strategy was tested by reducing 1a with sodium amalgam in tetrahydrofuran to give the dianion 2a which was then reacted with $(\eta - C_5 HMe_4)Fe(CO)_2I$, 3 to give the tetra-iron dimer 4a as the principal product (57%). Its structure was determined crystallographically [4] and is illustrated in Fig. 1. The complex adopts a *trans* arrangement about both its metal-metal bonds and the CH(NMe₂)CH(NMe₂) link between the rings. Four methyl substituents were used on the cyclopentadienyl ring of **3** to permit complete characterisation of all the expected reaction products from this reaction by ν MC-O IR.


As the presence of NMe₂ groups in 1a complicate its scission with I_2 , attention was directed to 1b, [5], one of the products of the reaction of $C_5H_5CH_2C_5H_5$ with $Fe_2(CO)_9$. Complex 1b was also characterised crystallographically [4], Fig. 2. The structure of 1b is relatively strain free and the complex contains an almost perfect (non-crystallographic) mirror plane. 1b can be reduced to its dianion 2b and cleaved with I_2 to its diiodide 5b. These two react to give a relatively high molecular weight polymer which is shown by IR spectroscopy to contain the $Fe_2(CO)_2(\mu-CO)_2$ moiety in 47% yield.


Both dianions 2a and 2b, react with Ph_2SnCl_2 and give 7a and 7b respectively. The ν MC-O IR frequencies are given in Table 1. The polymers are soluble in dichloromethane but unlike related monomers and dimers [6] are insoluble in hexane and diethyl ether. The polymers were difficult to purify (current methods rely on precipitation from dichloromethane solution using diethyl ether) and the C, H and N analytical data are

[•] Corresponding author.

Scheme 1.

Scheme 2.

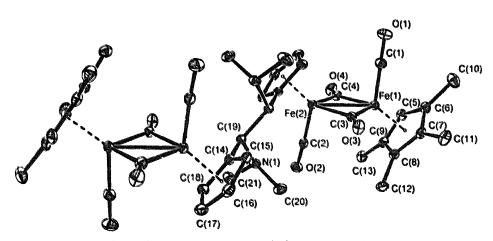


Fig. 1. The molecular structure of (4a), hydrogens omitted.

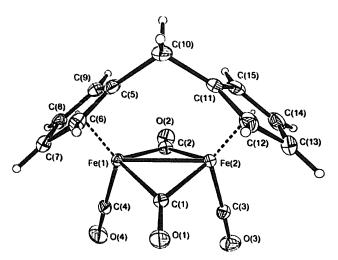


Fig. 2. The molecular structure of (1b).

always lower than expected. The presence of 1 and Cl impurities in 6 and 7 was confirmed by X-ray fluorescence measurements on an SCM. The claim that 6 and 7 are polymers is based on the following.

- (1) Their ν MC-O IR frequencies are close to but different from model compounds.
- (2) 6 and 7 unlike related monomers and dimers, do not move on TLC plates.
- (3) Measured molecular weights (osmometry) are 8000 for **6b** and 8500 for **7a**.

While the molecular weights obtained are more indicative of high oligomers rather than polymers, removal of impurities will increase these values considerably.

Since the metal-metal bond formation is the polymer generating step and as this takes place in the reaction of C_5H_5 - CH_2 - C_5H_5 with Fe₂(CO)₉ (used to synthesise **1b**) it was decided to look for polymers in the crude reaction product. A red powder precipitated when toluene solutions of the crude product were treated with hexane. This red powder had similar properties to 6 and 7 but its ν MC-O IR frequencies (CH₂Cl₂ solution) were lower than those of 6b: 1990, 1947 and 1768 cm⁻¹, and its solubility in CH₃CN was insufficient to give an IR spectrum.

Attempts to both purify 6 and 7 and to extend this reaction to polymers with only metal atoms in the backbone are in progress.

Table 1

IR spectral data in CH_2CI_2 solution (ν MC-O, cm⁻¹)

Complex	IR data
1(a)	1993, 1953 1770
1(b)	1994, 1955 1776
4(a)	1983, 1941 1757
6(b)	1993, 1952 1769
7(a)	1991, 1970, 1933, 1926
7(b)	1996, 1974.5, 1941.1, 1927

Acknowledgement

Acknowledgement is made for a grant to the Irish Government Agency Forbairt (LON).

References and notes

- [1] (a) C.G. de Azevedo, R. Boese, D.A. Newman and K.P.C. Vollhardt, Organometallics, 14 (1995) 4980; (b) M. Yilset, K.P.C. Vollhardt and R. Boese, Organometallics, 13 (1994) 3146; (c) W.A. Herrmann, R.W. Albach and J. Behm, J. Chem. Soc., Chem. Commun., (1991) 367; (d) R. Boese, R.L. Myrabo, D.A. Newman and K.P.C. Vollhardt, Angew. Chem. Int. Ed. Eng., 29 (1990) 549; (e) D.B. Firfray, A. Irving and J.R. Moss, J. Chem. Soc., Chem. Commun., (1990) 377; (f) M. Ferrer, A. Perales, O. Rossell and M. Seco, J. Chem. Soc., Chem. Commun., (1990) 1447; (g) S.J. Davies, J.A.K. Howard, R.J. Rusgrove and F.G.A. Stone, Angew. Chem. Int. Ed. Eng., 28 (1989) 624; (h) G.O. Nelson and M.E. Wright, J. Organomet. Chem., 206 (1981) C21; (i) P.A. Wegner and G.P. Sterling, J. Organomet. Chem., 162 (1978) C31.
- [2] (a) S. Barlow, A.R. Rohl and D. O'Hare, J. Chem. Soc., Chem. Commun., (1996) 257; (b) A.D. Foucher, B.Z. Tang and I. Manners, J. Am Chem. Soc., 114 (1992) 6246.
- [3] (a) C.W. Faulkner, S.L. Ingham, M.S. Khan, J. Lewis, N.J. Long and P.R. Raithby, J. Organomet. Chem., 482 (1994) 139; (b) S.L. Ingham, M.S. Khan, J. Lewis, N.J. Long and P.R. Raithby, J. Organomet. Chem., 470 (1994) 153; (c) M.S. Khan, A.K. Kakkar, N.J. Long, J. Lewis, P. Raithby, P. Nguyen, T.B. Marder, F. Wittman and R.H. Friend, J. Mater. Chem., 4 (1994) 1227; (d) G. Frapper and M. Kertesz, Inorg. Chem., 32 (1993) 732; (e) H.B. Fyfe, M. Mlekuz, D. Zargarian, N.J. Taylor and T.B. Marder, J. Chem Soc., Chem. Commun., (1991) 188; (f) N. Hagihara, K. Sonogashira and S. Takahashi, Adv. Polym. Sci., 41 (1981) 149.
- [4] All non polymeric compounds gave satisfactory analytical data. Crystallography. The structures were solved by direct methods, SHELXS-86 [7], and refined by full matrix least squares using smalx1.93 [8], smalx operations were rendered paperless using ORTEX which was also used to obtain the drawings [9]. Data were corrected for Lorentz and polarisation effects but not for absorption. Hydrogen atoms were included in calculated positions with thermal parameters 30% larger than the atom to which they were attached. The non-hydrogen atoms were refined anisotropically. All calculations were performed on a Silicon Graphics R4000 computer. 1b: $C_{15}H_{10}Fe_2O_4$, monoclinic, $P2_1/c$, a = 7.8203(9), $b = 12.497(2), c = 14.011(2) \text{ Å}, \beta = 92.27(2)^{\circ}, U = 1368.2(3) \text{ Å}^{3}.$ Z = 4, $D_c = 1.776$, R(int) = 0.02, 2372 reflections with 2131 > 2σ , R_1 (all data) 2.91%, wR_2 (all data) 9.84%. 4a: $C_{42}H_{48}Fe_4N_2O_8$, monoclinic, $P2_1/c$, a = 9.431(2), $b = \frac{1}{2}$ 13.436(2), c = 16.237(2) Å, $\beta = 106.58(2)^\circ$, U = 1972.0(6) Å⁴. Z = 2, $D_c = 1.570$, R(int) = 0.02, 6836 reflections with 3571 > 12σ, R₁ (all data) 10.88%, wR₂ (all data) 14.53%.
- [5] (a) T.E. Bitterwolf, J. Organomet. Chem., 312 (1986) 197; (b) N.E. Schore, C.S. Ilenda, M.A. White, H.E. Bryndza, M.G. Matturro and R.G. Bergman, J. Am. Chem. Soc., 106 (1984) 7451.
- [6] L. Párkányi, K.H. Pannell and C. Hernandez, J. Organomet. Chem., 347 (1988) 295.
- [7] G.M. Sheldrick, Acta. Cryst., A46 (1990) 467.
- [8] G.M. Sheldrick, SHELXL-93 a computer program for crystal structure determination, University of Gottingen 1993.
- [9] P. McArdle, J. Appl. Cryst., 28 (1995) 65.